Co-transcriptional degradation of aberrant pre-mRNA by Xrn2

نویسندگان

  • Lee Davidson
  • Alastair Kerr
  • Steven West
چکیده

Eukaryotic protein-coding genes are transcribed as pre-mRNAs that are matured by capping, splicing and cleavage and polyadenylation. Although human pre-mRNAs can be long and complex, containing multiple introns and many alternative processing sites, they are usually processed co-transcriptionally. Mistakes during nuclear mRNA maturation could lead to potentially harmful transcripts that are important to eliminate. However, the processes of human pre-mRNA degradation are not well characterised in the human nucleus. We have studied how aberrantly processed pre-mRNAs are degraded and find a role for the 5'→3' exonuclease, Xrn2. Xrn2 associates with and co-transcriptionally degrades nascent β-globin transcripts, mutated to inhibit splicing or 3' end processing. Importantly, we provide evidence that many endogenous pre-mRNAs are also co-transcriptionally degraded by Xrn2 when their processing is inhibited by Spliceostatin A. Our data therefore establish a previously unknown function for Xrn2 and an important further aspect of pre-mRNA metabolism that occurs co-transcriptionally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mRNA quality control goes transcriptional

Eukaryotic mRNAs are extensively processed to generate functional transcripts, which are 5' capped, spliced and 3' polyadenylated. Accumulation of unprocessed (aberrant) mRNAs can be deleterious for the cell, hence processing fidelity is closely monitored by QC (quality control) mechanisms that identify erroneous transcripts and initiate their selective removal. Nucleases including Xrn2/Rat1 an...

متن کامل

5′-end surveillance by Xrn2 acts as a shared mechanism for mammalian pre-rRNA maturation and decay

Ribosome biogenesis requires multiple nuclease activities to process pre-rRNA transcripts into mature rRNA species and eliminate defective products of transcription and processing. We find that in mammalian cells, the 5' exonuclease Xrn2 plays a major role in both maturation of rRNA and degradation of a variety of discarded pre-rRNA species. Precursors of 5.8S and 28S rRNAs containing 5' extens...

متن کامل

The multifunctional RNase XRN2.

Different classes of RNA function in various cellular processes, and their biogenesis and turnover involve diverse RNases for processing and degradation. XRN2 is a 5'→3' exoribonuclease that is evolutionarily conserved in eukaryotes. It is predominantly localized in the nucleus and recognizes single-stranded RNA with a 5'-terminal monophosphate to degrade it processively to mononucleotides. In ...

متن کامل

Arabidopsis thaliana XRN2 is required for primary cleavage in the pre-ribosomal RNA

Three Rat1/Xrn2 homologues exist in Arabidopsis thaliana: nuclear AtXRN2 and AtXRN3, and cytoplasmic AtXRN4. The latter has a role in degrading 3' products of miRNA-mediated mRNA cleavage, whereas all three proteins act as endogenous post-transcriptional gene silencing suppressors. Here we show that, similar to yeast nuclear Rat1, AtXRN2 has a role in ribosomal RNA processing. The lack of AtXRN...

متن کامل

SmD 1 interplays with splicing , RNA quality control , and 1 post - transcriptional gene silencing in Arabidopsis 2 3

40 41 RNA quality control (RQC) eliminates aberrant RNAs based on their atypical structure, 42 whereas post-transcriptional gene silencing (PTGS) eliminates both aberrant and functional 43 RNAs through the sequence-specific action of short interfering RNAs (siRNAs). The 44 Arabidopsis thaliana mutant smd1b was identified in a genetic screen for PTGS deficiency, 45 revealing the involvement of S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2012